Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
JMIR Public Health Surveill ; 7(6): e24251, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-2197876

ABSTRACT

BACKGROUND: COVID-19 transmission rates in South Asia initially were under control when governments implemented health policies aimed at controlling the pandemic such as quarantines, travel bans, and border, business, and school closures. Governments have since relaxed public health restrictions, which resulted in significant outbreaks, shifting the global epicenter of COVID-19 to India. Ongoing systematic public health surveillance of the COVID-19 pandemic is needed to inform disease prevention policy to re-establish control over the pandemic within South Asia. OBJECTIVE: This study aimed to inform public health leaders about the state of the COVID-19 pandemic, how South Asia displays differences within and among countries and other global regions, and where immediate action is needed to control the outbreaks. METHODS: We extracted COVID-19 data spanning 62 days from public health registries and calculated traditional and enhanced surveillance metrics. We use an empirical difference equation to measure the daily number of cases in South Asia as a function of the prior number of cases, the level of testing, and weekly shifts in variables with a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Traditional surveillance metrics indicate that South Asian countries have an alarming outbreak, with India leading the region with 310,310 new daily cases in accordance with the 7-day moving average. Enhanced surveillance indicates that while Pakistan and Bangladesh still have a high daily number of new COVID-19 cases (n=4819 and n=3878, respectively), their speed of new infections declined from April 12-25, 2021, from 2.28 to 2.18 and 3.15 to 2.35 daily new infections per 100,000 population, respectively, which suggests that their outbreaks are decreasing and that these countries are headed in the right direction. In contrast, India's speed of new infections per 100,000 population increased by 52% during the same period from 14.79 to 22.49 new cases per day per 100,000 population, which constitutes an increased outbreak. CONCLUSIONS: Relaxation of public health restrictions and the spread of novel variants fueled the second wave of the COVID-19 pandemic in South Asia. Public health surveillance indicates that shifts in policy and the spread of new variants correlate with a drastic expansion in the pandemic, requiring immediate action to mitigate the spread of COVID-19. Surveillance is needed to inform leaders whether policies help control the pandemic.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/statistics & numerical data , Disease Outbreaks/statistics & numerical data , Health Policy , Public Health/statistics & numerical data , Adult , Aged , Aged, 80 and over , Asia/epidemiology , COVID-19/prevention & control , Communicable Disease Control/legislation & jurisprudence , Female , Humans , Longitudinal Studies , Male , Middle Aged , Public Health Surveillance , SARS-CoV-2
2.
J Med Internet Res ; 23(2): e26081, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1575190

ABSTRACT

BACKGROUND: The COVID-19 pandemic has had profound and differential impacts on metropolitan areas across the United States and around the world. Within the United States, metropolitan areas that were hit earliest with the pandemic and reacted with scientifically based health policy were able to contain the virus by late spring. For other areas that kept businesses open, the first wave in the United States hit in mid-summer. As the weather turns colder, universities resume classes, and people tire of lockdowns, a second wave is ascending in both metropolitan and rural areas. It becomes more obvious that additional SARS-CoV-2 surveillance is needed at the local level to track recent shifts in the pandemic, rates of increase, and persistence. OBJECTIVE: The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk and persistence, and weekly shifts, to better understand and manage risk in metropolitan areas. Existing surveillance measures coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until, and after, an effective vaccine is developed. Here, we provide values for novel indicators to measure COVID-19 transmission at the metropolitan area level. METHODS: Using a longitudinal trend analysis study design, we extracted 260 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in the 25 largest US metropolitan areas as a function of the prior number of cases and weekly shift variables based on a dynamic panel data model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Minneapolis and Chicago have the greatest average number of daily new positive results per standardized 100,000 population (which we refer to as speed). Extreme behavior in Minneapolis showed an increase in speed from 17 to 30 (67%) in 1 week. The jerk and acceleration calculated for these areas also showed extreme behavior. The dynamic panel data model shows that Minneapolis, Chicago, and Detroit have the largest persistence effects, meaning that new cases pertaining to a specific week are statistically attributable to new cases from the prior week. CONCLUSIONS: Three of the metropolitan areas with historically early and harsh winters have the highest persistence effects out of the top 25 most populous metropolitan areas in the United States at the beginning of their cold weather season. With these persistence effects, and with indoor activities becoming more popular as the weather gets colder, stringent COVID-19 regulations will be more important than ever to flatten the second wave of the pandemic. As colder weather grips more of the nation, southern metropolitan areas may also see large spikes in the number of cases.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control , COVID-19/prevention & control , COVID-19/transmission , Health Policy , Humans , Longitudinal Studies , Models, Statistical , Pandemics , Public Health , Public Health Surveillance , Registries , SARS-CoV-2 , United States/epidemiology
3.
Aesthet Surg J ; 41(9): NP1199-NP1205, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1191098

ABSTRACT

BACKGROUND: The emergence of COVID-19 led rapidly to one of the most severe disease outbreaks in modern history. This caused many aesthetic practices to close temporarily, providing a unique opportunity to evaluate the impact of neurotoxin use in the setting of an ongoing pandemic. OBJECTIVES: The aim of this study was to examine whether administration of onabotulinumtoxinA (BOTOX Cosmetic, Allergan plc, Dublin, Ireland) to regular users synergistically amplifies the elevation in mood/happiness, self-satisfaction with appearance, and overall satisfaction in the context of the ongoing pandemic. METHODS: A randomized, single-blind, crossover study was designed to evaluate the impact of neurotoxin treatment in the upper third of the face on mood, self-satisfaction with appearance, and overall satisfaction. The placebo group crossed over to treatment after 1 month. Surveys evaluating patient happiness, self-satisfaction with appearance, and overall efficacy were completed by both groups, and again by the placebo group following crossover to treatment. RESULTS: Forty-five subjects were enrolled: 30 in the treatment group and 15 in the control/crossover group. The placebo group demonstrated no change in happiness or self-satisfaction in appearance until crossover to the treatment group. Both groups, once receiving onabotulinumtoxinA, reported increased happiness, self-satisfaction with appearance, and overall treatment satisfaction. CONCLUSIONS: OnabotulinumtoxinA treatment to the upper face in the midst of the COVID-19 pandemic was found to increase patient happiness, self-satisfaction with appearance, and overall treatment satisfaction.


Subject(s)
Botulinum Toxins, Type A , COVID-19 , Neuromuscular Agents , Skin Aging , Botulinum Toxins, Type A/adverse effects , Cross-Over Studies , Double-Blind Method , Humans , Neuromuscular Agents/adverse effects , Pandemics , Patient Satisfaction , SARS-CoV-2 , Single-Blind Method , Treatment Outcome
4.
JMIR Public Health Surveill ; 7(5): e25753, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1183763

ABSTRACT

BACKGROUND: The COVID-19 global pandemic has disrupted structures and communities across the globe. Numerous regions of the world have had varying responses in their attempts to contain the spread of the virus. Factors such as public health policies, governance, and sociopolitical climate have led to differential levels of success at controlling the spread of SARS-CoV-2. Ultimately, a more advanced surveillance metric for COVID-19 transmission is necessary to help government systems and national leaders understand which responses have been effective and gauge where outbreaks occur. OBJECTIVE: The goal of this study is to provide advanced COVID-19 surveillance metrics for Canada at the country, province, and territory level that account for shifts in the pandemic including speed, acceleration, jerk, and persistence. Enhanced surveillance identifies risks for explosive growth and regions that have controlled outbreaks successfully. METHODS: Using a longitudinal trend analysis study design, we extracted 62 days of COVID-19 data from Canadian public health registries for 13 provinces and territories. We used an empirical difference equation to measure the daily number of cases in Canada as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: We compare the week of February 7-13, 2021, with the week of February 14-20, 2021. Canada, as a whole, had a decrease in speed from 8.4 daily new cases per 100,000 population to 7.5 daily new cases per 100,000 population. The persistence of new cases during the week of February 14-20 reported 7.5 cases that are a result of COVID-19 transmissions 7 days earlier. The two most populous provinces of Ontario and Quebec both experienced decreases in speed from 7.9 and 11.5 daily new cases per 100,000 population for the week of February 7-13 to speeds of 6.9 and 9.3 for the week of February 14-20, respectively. Nunavut experienced a significant increase in speed during this time, from 3.3 daily new cases per 100,000 population to 10.9 daily new cases per 100,000 population. CONCLUSIONS: Canada excelled at COVID-19 control early on in the pandemic, especially during the first COVID-19 shutdown. The second wave at the end of 2020 resulted in a resurgence of the outbreak, which has since been controlled. Enhanced surveillance identifies outbreaks and where there is the potential for explosive growth, which informs proactive health policy.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Public Health Surveillance/methods , Canada/epidemiology , Humans , Longitudinal Studies
SELECTION OF CITATIONS
SEARCH DETAIL